A Probability Analysis for Candidate-Based Frequent Itemset Algorithms

Nele Dexters
University of Antwerp, Belgium
Paul P. Purdom, Dirk Van Gucht
Indiana University, Bloomington USA
Outline

• What is the paper about?
• Detailed Analysis
 - Candidate-based FIM Algorithms
 - General Shopping Model
 - Candidates
 - Probabilities
• Results
 - “Line”
 - Dataset Effects

Universiteit Antwerpen
What is the paper about?

“A probability Analysis for Candidate-Based Frequent Itemset Algorithms”

→ Theoretical Analysis of candidate generation for FIM Algorithms

→ Detailed probabilistic study of the effects of different data distributions on the performance of FIM algorithms.

Universiteit Antwerpen
Outline

• Research Area
• Analysis
 - Candidate-based FIM Algorithms
 - General Shopping Model
 - Candidates
 - Probabilities
• Results
 - Line
 - Dataset Effects

Universiteit Antwerpen
Candidate-based FIM Algorithms

- The Apriori Algorithm
- AIS
- Eclat & FP-growth
- The Fast Completion Apriori (FCA) Algorithm
General Probabilistic Shopping Model

- Identical
- Independent
- Random

→ Very general: any correlation between items is possible
→ Permits us to consider all sorts of data
 - Uniform
 - Peaky
 - Anticorrelated
Candidates (1)

- An itemset is a candidate
 - No deduction of frequency status
 - Frequency has to be counted explicitly in the DB

- In practice, I is a candidate if certain associated testsets are already determined to be frequent.
Candidates (2)

Testsets

- For Apriori, AIS, Eclat & FP-growth: itemsets that are obtained by omitting a single item

- For FCA: all those subsets whose size is equal to the level where the regular Apriori Algorithm was last used.
Probabilities (1)

• Frequency status of candidate set I:
 - If I is frequent, it is called a success
 - Otherwise, it is a failure

• We study the three important corresponding probabilities:
 - Candidacy probability $C(I)$
 - Success probability $S(I)$
 - Failure probability $F(I)$
Probabilities (2)

- $C(I) = S(I) + F(I)$ depends on the particular algorithm.

- All correct algorithms have the same $S(I)$

- $F(I)$ depends on both the problem instance and the algorithm. It is particularly important, because it is related to work that a better algorithm might hope to avoid.
The Success Probability

\[S(I) = \sum_{j \geq k} \binom{b}{j} [P(I)]^j [1 - P(I)]^{b-j} \]

We can show that

- \(P(I) \leq k/b: S(I) \rightarrow 0 \)
- \(P(I) \geq k-1/b: S(I) \rightarrow 1 \)
The Failure Probability

In detail for Apriori

\[F(I) = C(I) - S(I) = \sum_{j_0 < k \atop j_1 \geq k - j_0} \left(j_0, j_1, \ldots, j_{|I|}, b - j_0 - j_1 - \cdots - j_{|I|} \right) \]

\[\times [P(I)]^{j_0} \left[\prod_{1 \leq i \leq |I|} Q_i(I)^{j_i} \right] \left[1 - P(I) - \sum_{1 \leq i \leq |I|} Q_i(I) \right]^{b - j_0 - \sum_{1 \leq i \leq |I|} j_i} \]
Outline

• Research Area
• Analysis
 - Candidate-based FIM Algorithms
 - General Shopping Model
 - Candidates
 - Probabilities
• Results
 - Line
 - Dataset Effects
\[
\begin{align*}
C'(I) &\approx 1 \\
S'(I) &\approx 1 \\
F'(I) &\approx 0 \\
C(I) &\approx 1 \\
S(I) &\approx 0 \\
F(I) &\approx 1 \\
C(I) &\approx 0 \\
S(I) &\approx 0 \\
F(I) &\approx 0
\end{align*}
\]
→ For both versions of the Apriori algorithm, the dominant testset is the best testset.

→ For AIS, it is the worst testset.

→ For Eclat & FP-growth, the smallest of the father or the special-uncle testset controls the failure probability. This depends on the ordering that is used.
Dataset Effects

We compare the behavior of the candidate-based FIM algorithms for a variety of data distributions.

General results:
• The algorithms have similar performances on uniform random data.
• The algorithms can have hugely different performance on other types of data.

Universiteit Antwerpen
Dataset Effects (2)

- Independent random data:
 Apriori ≈ Eclat LFF > Eclat Lexico > Eclat MFF > AIS
- Single peak
 AIS is worst
- Overlapping peaks
 Apriori > Eclat LFF > Eclat Lexico > Eclat MFF > AIS
- For anticorrelated data, it is even possible to have
 Eclat MFF > Eclat LFF
Thank you!